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Bernstein modes in a weakly relativistic electron-positron plasma
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The form of the propagating electrostatic Bernstein mode in a relativistic electron-positron plasma is mark-
edly different from that in the classical plasma, once the momentum-dependent cyclotron frequency is ac-
counted for in full inside the integrations. Given that particles in different parts of momentum space ‘‘see’’ a
different cyclotron frequency, there is no simple global singularity which reproduces the classical dispersion
features.
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I. INTRODUCTION

Astrophysical electron-positron plasmas are, by their
ture, highly energetic. The mathematical modeling of su
media must be relativistic, since the thermal content of s
a plasma will be significant compared to the particles’ r
energy@1,2#. In this paper we describe the kinetic theory
weakly relativistic plasmas, defined to be those for which
equilibrium distribution function is taken to be Maxwellian
but the full relativistic correction for the mass-dependent
clotron frequency is included.

We present new dispersion curves for the particular c
of Bernstein modes@3–5#, which are electrostatic wave
propagating perpendicularly, and nearly perpendicularly
the uniform equilibrium magnetic field. In this paper we w
concentrate on the specific case of perpendicular prop
tion. The classical treatment of these modes for an elect
ion plasma depends upon an arbitrarily low temperature,
yet is not entirely consistent with cold plasma theory@6,8,7#.
Part of the discrepancy undoubtedly can be attributed to
handling of singularities in the classical kinetic case,
which the harmonic resonances are removed from the i
gration over particle distribution. In fact, the correct meth
of treating these points is to recognize that the cyclot
frequency is momentum dependent~that is, the cyclotron fre-
quency drops as the particle momentum increases!, and treat
the singular integral accordingly. Other researchers have
duced purely formal solutions@2# for an arbitrary relativistic
g but without any phenomenological analysis, or have ta
led either ultrarelativistic plasmas@9,10# or weakly relativis-
tic behavior in whichg'11p2/(2m2c2) @6–9#; most of
these treatments are for electron-ion plasmas, and assu
stationary ion background. In this paper we present a tr
ment of the Bernstein modes for a weakly relativis
electron-positron plasma, valid for moderate values ofg, and
without the ‘‘stationary ion’’ approximation. The following
section gives the full formal statement of the dispersion
lation for all linear Vlasov-kinetic modes in ane1e2 plasma.
Section III describes the nonrelativistic Bernstein modes
this context, to provide an essential comparison for
weakly relativistic case in the subsequent section.
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II. MODEL EQUATIONS

The starting point is the Vlasov equation formulated
momentum space, rather than velocity space@9#:

] f s

]t
1v•

] f s

]r
1qs~E1v3B!•

] f s

]p
50, ~1!

where f s(r,p,t) and qs are, respectively, the particle distr
bution function and charge, for particles of speciess, wheres
is either e for electrons, orp for positrons. Together with
Maxwell’s equations

“3B5m0(
s

nsE qsv f sdp1
1

c2

]E

]t
, ~2!

“3E5
]B

]t
, ~3!

“•B50, ~4!

“•E5(
s

qs

e0
nsE f sdp, ~5!

Eqs. ~1!–~5! constitute a complete set for describing t
plasma behavior@although Eq.~4! and Eq.~5! can be con-
sidered as initial conditions only#. Note thatns is the number
density of speciess.

Consider now the linearized equations appropriate for
scribing small amplitude waves. Assuming that the equil
rium quantities are distinguished from perturbations by
subscript 0, we have

~p3B0!•
] f 0s

]p
50, ~6!

] f s

]t
1v•

] f s

]r
1q~v3B0!•

] f s

]p
52q~E1v3B!•

] f 0s

]p
,

~7!

“3B5m0(
s

qs

ms
nsE pf sdp1

1

c2

]E

]t
. ~8!
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Our interest lies in small-amplitude waves, and so we
sume that the equilibrium is uniform in space, and that p
turbations vary as expi(k•r2vt). The full details of the so-
lution procedure are well documented elsewhere@11,12,5#
and need not be repeated. After some manipulation, the
persion relation for small amplitude waves can be written
the form

k3~k3E!1
v2

c2
E

52
2p

c2 (
s

vps
2 E

0

`E
2`

`

dp'dpi (
n52`

`

Qns•E ~9!

in which cylindrical coordinates (pi ,p' ,f) for the momen-
tum have been used, withi , ' denoting the direction paral
lel, and perpendicular, to the equilibrium magnetic field, a
where vps5nsqs

2/(e0ms) denotes the plasma frequency
speciess with ~rest! massms . Note that the summation i
over integern, and that we have assumed that the equi
rium distribution function f s0 is isotropic, so that
pi] f s0 /]p'5p'] f s0 /]pi . The matrixQns is defined by
e
lt

e

is

03640
s-
r-

is-
n

d

-

Qns5Us~v2kiv i2nVs!
21

33
p'

2 n2

zs
2

Jn
2 2 ip'

2 n

zs
JnJn8 p'pi

n

zs
Jn

2

ip'
2 n

zs
JnJn8 p'

2 Jn8
2 ip'piJn8Jn

p'pi
n

zs
Jn

2 2 ip ip'Jn8Jn pi
2Jn

2
4 ,

~10!

in which Vs5qsB0 /ms is the cyclotron frequency of specie
s, ms is the particle mass,Jn is the Bessel function of orde
n and argumentzs , and the following definitions apply:

Us5~v2kiv i!
] f 0s

]p'

1kiv'

] f 0s

]pi
, ~11!

zs5
k'v'

Vs
. ~12!

There are several simplifications that can be applied imm
diately. Since we wish to study perpendicular Bernst
modes primarily,ki50. Next, noting thatze52zp , the sum
over species can be carried out quite simply given that all
elements ofQns are identical in magnitude for an electron
positron plasma, with only the~1,3!, ~2,3!, ~3,1!, and ~3,2!
elements changing sign. Hence when the positron and e
tron matrices are added, the result is
Qnp1Qne52
v2

Dn

] f 0

]p'

33
p'

2 n2

z2
Jn

2 2 ip'
2 n

z
JnJn8 p'pi

n2

z

V

v
Jn

2

ip'
2 n

z
JnJn8 p'

2 Jn8
2 ip'pi

nV

v
Jn8Jn

p'pi
n2

z

V

v
Jn

2 2 ip'pi
nV

v
Jn8Jn pi

2Jn
2

4 , ~13!
in which Dn5v22n2V25v22n2V0
2/g2 and all species-

related subscripts have been dropped, the positron valu
any quantity being assumed. A further simplification resu
from considering the summing over integern, since those
matrix elements which contain only a linear factorn must
vanish, given thatn ranges over all positive and negativ
integer values. Finally, note that since the integration inpi
ranges from2` to `, those elements which are odd inpi
vanish identically on integration, and therefore may be d
carded. As a result, the right-hand side of Eq.~9! can be
written

24pvp
2 v2

c2 (
n52`

` E
2`

`

dpi E
0

`

dp'Kn•E, ~14!
of
s

-

where

Kn5
1

Dn

] f 0

]p'F p'
2 n2

z2
Jn

2 0 0

0 p'
2 Jn8

2 0

0 0 pi
2Jn

2

G . ~15!

Note that the left-hand-side of Eq.~9! simplifies to
3-2
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3
v2

c2
0 0

0
v2

c2
2k'

2 0

0 0
v2

c2
2k'

2
4 •E ~16!

showing that for the particular case of wave propagation p
pendicular to the equilibrium magnetic field in an equal-m
plasma, the kinetic modes simplify beautifully. Since th
paper is concerned with the Bernstein modes, only the s
tion for nonzeroEx will be examined, for which the disper
sion relation is

1524pvp
2 (

n52`

` E
2`

`

dpi E
0

`

dp'

] f 0

]p'

p'
2 n2

Dnz2
Jn

2~z!.

~17!

However, in order to progress, the equilibrium distributi
function f 0 must be specified, and this is the subject of t
next sections.

III. CLASSICAL, NONRELATIVISTIC BERNSTEIN
MODES

In the usual, classical treatment of the electron Berns
modes for a plasma with stationary ions, the relativis
terms are discarded, and the equilibrium distribution funct
is the classical Maxwell-Boltzmann one,

f 0~p!5~2pmekBT!23/2exp@2p2/~2mekBT!#, ~18!

which is written here in momentum form, and in whichme is
the electron~and positron! rest mass. It is instructive to pro
ceed with the fully nonrelativistic calculation for an electro
positron plasma, since this calculation will serve as a v
contrast to the relativistic treatment that follows. The m
important aspect of the nonrelativistic calculation is that
particle mass remains a constant, and therefore the cyclo
frequency is not momentum dependent. Considering
~1,1!th entry of the matrices in Eq.~16! and Eq.~15!, the
dispersion relation for the Bernstein waves can be writte

154p~2p!23/2~mekBT!25/2vp
2

3 (
n52`

`
n2

Dn
E

2`

`

dpi E
0

`

dp'

p'
3

z2
Jn

2~z!. ~19!

Notice thatDn can be taken outside the integration, sin
there is no relativistic correction to the cyclotron frequen
In fact, the double integration can be performed analytica
since the integrations with respect topi andp' are indepen-
dent. The result is in the form of the dispersion relation

L54vp
2exp~2L! (

n51

`
n2

v22n2V2
I n~L!, ~20!
03640
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where L, the ratio of thermal energy to wave energy,
given by

L5
k'

2 kBT

meV
2

. ~21!

Equation~20! is exact for an electron-positron plasma; the
is no ‘‘static ion’’ approximation here. Solutions occur
frequencies close to the cyclotron harmonics, and the
curves are presented in Figs. 1 and 2, which show the c
vp /V51 and vp /V53, respectively. Note that Eq.~20!
also gives the approximate dispersion relation for an elec
plasma with stationary ions, if the factor of 4 is replaced
2.

A. Behavior for small L

A deeper insight into the characteristics of the dispers
relation can be gleaned from the the Taylor expansion of
~20! for small L, which gives the long-wavelength~or low-
temperature! approximate dispersion relation

L'
DHD2

6V2vp
2

, L!1, ~22!

in which

FIG. 1. Dispersion curves showing solutions inv̂2L space for

the classical, nonrelativistic case, wherev̂5v/V. The vertical axis

is v̂, and the horizontal isL. The nondimensional hybrid frequenc

is A3, for v̂p
25vp

2/V251, and is shown arrowed in the figure.

FIG. 2. Dispersion curves showing solutions inv̂2L space for

the classical, nonrelativistic case, wherev̂5v/V. The vertical axis

is v̂, the horizontal isL. The nondimensional hybrid frequency
A19, for v̂p5vp /V53, and is shown arrowed in the figure.
3-3
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DH5v22vH
2 5v222vp

22V2 ~23!

defining the hybrid frequencyvH . First, note there is no
solution for v5V,L!1, since for this case Eq.~22! pre-
dicts L'1, a contradiction. Ifv25vH

2 1e, then

L'
2vp

223V2

6vp
2V2

e. ~24!

If 2vp
2,3V2, so thatvH,2V, then Eq.~24! shows that

e,0 is required to ensureL.0; hence the dispersion curv
showsv dropping asL increases from 0. The next possib
solution is one for whichv254V21e, giving the local dis-
persion relation

L'
3V222vp

2

6vp
2V2

e. ~25!

In this case, assuming againvH,2V, the dispersion curve
shows thatv increases asL increases. Hence, forvH
,2V, there is no wave solution for frequencies betweenvH
and 2V.

If, on the other hand, 2vp
2.3V2, so thatvH.2V, the

dispersion curve atv52V showsv decreasing asL in-
creases from zero. In general, there is no long-wavelen
mode in the approximate frequency interval starting j
above vH , and ending before the next highest cylcotr
harmonic.

B. Behavior for large L

For very short-wavelength solutions, given that

exp~2L!I n~L!;~2pL!21/2, L@1 ~26!

then an approximate dispersion relation

L3/2'
4vp

2

A2p
(
n51

`
n2

v22n2V2
, L@1 ~27!

shows that short-wavelength solutions can only occur at
quencies close to cyclotron harmonics:v'nV.

C. Stationary modes

Solutions to the dispersion relation for frequencies hig
than the hybrid frequency have the property that the gr
velocity has a zero for finite values ofL, since the dispersion
curves are bell shaped@5#. From the curves in Figs. 1 and 2
the maxima in the dispersion curve occur at intermed
values ofL, and so neither of the two approximate trea
ments described above is adequate to reveal this effect
stead, if

f n~L!5
e2L

L
I n~L!, ~28!

then the full dispersion relation can be written in the form
03640
th
t

-

r
p

e
-
In-

154vp
2F f 1~L!

v22V2
1

4 f 2~L!

v224V2
1•••G . ~29!

For illustrative purposes, we shall consider only the firs
terms, with the assumptionV,vH,2V, as before. An ex-
cellent approximation tof n(x) is

f n~x!'22nxn21S 1

n!
1

x2

4~n11!! De2x. ~30!

For solutions near the second harmonic, that isv254V2

1e, e.0 the position where the tangent to the disperi
curve is zero is readily approximated by the solution to

f 28~L!'0 ~31!

which, on using Eq.~30!, yields the cubic equation

L323L2112L21250, ~32!

the roots of which are the values ofL for which the tangent
vanishes. In fact Eq.~32! has only one real positive root, a
L0'1.22, in close agreement with Figs. 1 and 2. A mo
detailed asymptotic analysis@5# places these critical points a
L51.25, 3.05, 5.44, and 8.46 for frequencies nearv̂
52, 3, 4, and 5, respectively. Given thatL'k'

2 RL
2/3, where

RL is the Larmor radius, these critical values correspond
k'RL'n, n52, 3, 4 revealing a resonance between
wavelength of the Bernstein mode and the influence of
magnetic field via the Larmor radius.

Hence all solutions for frequencies higher than the hyb
frequency have bell-shaped dispersion curves, showing
for a given frequency, there are either two solutions, cor
sponding to different values ofk' , or no solution at all, if
the frequency is sufficiently far from a cyclotron harmonic
be in the band gap. Note also that there is always one (v,k')
pair for which the group velocity is zero, and is therefore
nonpropagating wave. However, for all frequencies less t
the hybrid frequency, there is always a unique value ofk'

giving an electrostatic wave~allowing for infiniteL values!;
none of these solutions has zero group velocity.

D. Summary

The analysis in this section shows how the classical, n
relativistic Bernstein modes can be described wholly anal
cally, with general dispersion relations expressible in clos
form. This is only possible because the integrations can
performed independently, since the poles in the denomin
are not functions of momentum.

IV. WEAKLY RELATIVISTIC APPROXIMATION

In the relativistic case, the cyclotron frequency is a fun
tion of momentum, and the integrations overpi and p' are
not independent, as can be seen from the true form of
relativistic equilibrium function@2,9,13#:

f 0~p!5~4pme
3c3!21

a

K2~a!
exp~2ag!, ~33!
3-4
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where

a5
mec

2

kBT
~34!

is the nondimensional reciprocal relativistic temperature,K2
is the modified Bessel function of the second kind, of ord
2, and

g5F11
p'

2 1pi
2

me
2c2 G 1/2

~35!

is the usual relativistic Lorentz factor. It is clear that on su
stituting Eq.~33! into Eq.~17! there is no possibility of sepa
rating the integrand into independent parts, nor of extrac
Dn from any part of the integration. As a physically mea
ingful compromise, we define theweakly relativistic approxi-
mation to be one in which the equilibrium distribution func
tion for positrons and electrons is the classical Maxwell
given by Eq.~18!, but in which the Lorentz factorg is re-
tained in full in theDn term in the denominator of Eq.~14!.
This simplifies the integration over momentum space, w
out sacrificing the significant relativistic Doppler correctio
to the singularity. Note thatg will not be expanded binomi-
ally as in other articles@6,8#.

To simplify the algebra, the following nondimension
variables are adopted from now on:

v̂5v/V0 , v p̂5vp /V0 ,

p̂i5pi /~mec!, p̂'5p' /~mec!, ~36!

k̂'5k'c/V0 , z5 k̂'p̂' ,

whereV05eB0 /me is the rest cyclotron frequency, a con
stant. The full dispersion relation for weakly relativist
Bernstein modes can then be written in the form

v̂25
4v̂p

2

A2p k̂'
2

a5/2(
n51

` E
0

`

dp̂'E
2`

`

dp̂i
n2g2p̂'

g22n2/v̂2

3 Jn
2~ k̂'p̂'!expF2

1

2
a~ p̂'

2 1 p̂i
2!G . ~37!

Noting that

g2

g22n2/v̂2
511

n2

v̂2 S 1

g22n2/v̂2D , ~38!

the integrand in Eq.~37! can be split into two parts, one o
which has singularity. The first double integral can be p
formed wholly analytically to yield

E
0

`E
2`

`

dp̂'dp̂ip̂'Jn
2~ k̂'p̂'!expS 2

1

2
ap̂2D

5A~2pa23/2e2LI n~L!, ~39!
03640
r

-

g
-

n

-

-

wherep̂25 p̂'
2 1 p̂i

2 . Moreover, the summation over indexn
applied to Eq.~39! can be performed analytically, via

(
n51

`

n2I n~L!5
1

2
LeL ~40!

allowing the full dispersion relation to be written in the for

v̂252v̂p
21

4v̂p
2a5/2

A2pv̂2k̂'
2 (

n51

`

n4E
0

`

dp̂'p̂'Jn
2~ k̂'p̂'!e2ap̂'

2 /2

3E
2`

`

dp̂i
e2ap̂i

2/2

11 p̂i
21 p̂'

2 2n2/v̂2
. ~41!

The denominator in the second integral in Eq.~41! has the
factor g22n2/v̂2, which can lead to singularities in thep̂i

integral if n2/v̂2.1, sinceg>1. Such singular integrals
where they occur, are properly defined by the procedure
cussed below, and in the Appendix.

In particular, defining

bn
25n2/v̂221, ~42!

there are two clear cases that can be identified forv̂,n, that
is, bn

2.0: ~i! bn
2. p̂'

2 ~ii ! bn
2, p̂'

2 . The singularities on the

real line in thep̂i integration arise for small enoughp̂' , and
so can be negotiated by splitting the range of thep̂' integra-
tion into 2 parts, corresponding to cases~i! and ~ii !: ~i! 0 to
bn , and~ii ! bn to `. Only the first of these integration range
incurs singularities on the realk̂i line. In case~ii !, the de-
nominator does not have zeros on the realk̂i line, and so no
singularity arises in thep̂i integration. Finally, note that if
bn

2,0, then there are no zeros in the denominator, and thp̂i
integration is again well defined; this will be referred to
case~iii !.

Returning to the full dispersion relation, Eq.~41!, we can
state that for cases~i! and ~ii !, the double integration term
can be written in the form

E
0

bn
dbbJn

2~ k̂'Abn
22b2!e2(bn

2
2b2)/2I1~a,b!

1E
0

`

dddJn
2~ k̂'Ad21bn

2!e2(bn
2
1d2)/2I2~a,d!, ~43!

where thep̂' integration has been transformed using t
changes of variablep̂'

2 5bn
22b2 in the first integral andp̂'

2

5bn
21d2 in the second. Thep̂i integration is folded inside

the integralsI1,2, with the following definitions. Taking case
~i! first,
3-5
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I1~a,b!5E
2`

`

dz
exp~2az2/2!

z22b2
5 i

p

b
e2ab2/2erf~ iAab2/2!.

~44!

The integrand contains simple poles at6b, and the details of
the requisite integration contour and subsequent evalua
of the integral are deferred to the Appendix, rather th
quoted here. The second integralI2 is defined by

I2~a,b!5E
2`

`

dz
exp~2az2/2!

z21b2
5

p

b
eab2/2erfc~Aab2/2!,

~45!

where once again the full details of the evaluation of t
integral are deferred to the Appendix.

With Eqs.~44! and~45! substituted into Eq.~43!, and with
a final change of variable that simplifies the error functi
argument, the full dispersion relation Eq.~41! can be written
in the form

v̂222v̂p
25D (

n51

`

n43H An
I 1An

II , n>v̂

An
III , n,v̂,

~46!

where

An
I 5e2xn

2E
0

xn
Jn

2~kAxn
22x2!ierf~ ix !dx, ~47!

An
II5e2xn

2E
0

`

Jn
2~kAxn

21x2!erfc~x!dx, ~48!

and

An
III 5e2xn

2E
uxnu

`

Jn
2~kAxn

21x2!erfc~x!dx. ~49!

Note that i erf(ix) is real. The following notation has als
been used:

D54p1/2
v̂p

2

v̂2

a2

k̂'
2

, ~50!

xn
25

a

2 S n2

v̂2
21D , ~51!

k5A2/ak̂' . ~52!

Note that inAn
III , xn

2,0 sincev̂.n. Hence for a givenv̂

such thatm21,v̂<m for some integerm>1, the disper-
sion relation is

v̂222v̂p
25D$m4Am

I 1m4Am
II 1~m11!4Am11

I

1~m11!4Am11
II 1•••1~m21!4Am21

III

1~m22!4Am22
III 1•••1A1

III %. ~53!
03640
on
n

s
A. General remarks

The solutions to the dispersion relation are given in Fi
3, 4, and 5, for the casesa510, 20, and 50, respectively. I
each calculation, the Bessel function terms up to sixth or
were included. The computer algebra systemMACSYMA @14#
was used for all analytical and numerical manipulations. I
clear from these curves for the various values ofa that the
weakly relativistic case is significantly different from th
classical case. Not only are the classical single lines repla
by closed curves, there is only one solution for vanishin
small k̂' . Associated with each set of dispersion curves i
minimum, nonzero value ofk, the latter increasing with in-
creasing frequency. Moreover, there is also a maxim
value of k for those solutions which form closed curve
once more, the higher the frequency, the greater the m
mum valid k. Notice also that solutions occur between t
cyclotron harmonics. Earlier weakly relativistic modeling
electron-ion Bernstein modes revealed certain of these
tures @6,8#, including frequency down shifting, finite mini
mum k' values and even the hint of island-type formatio
@8#, albeit with complex wave numbers.

However, not only are these treatments for electron-
plasmas, and so unable to exploit the symmetry of thee1e2

plasma, but they are also dependent on the binomial exp
sion of the relativisticg, or on expansion in powers ofki ,
and so are of restricted validity.

In our paper, the plasma is mass symmetric, and the
gularities appear in the full momentum integration. As a

FIG. 3. Dispersion curves showing solutions inv̂-k space for

the casea510, v̂p53. Vertical axis isv̂; horizontal axis isk.

FIG. 4. Dispersion curves showing solutions inv̂-k space for

the casea520, v̂p53. Vertical axis isv̂; horizontal axis isk.
3-6
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sult, there are no complex roots to the dispersion relation
the specific case of perpendicular propagation. The treatm
of residues given in the Appendix makes this clear.

The general appearance of the dispersion curves in
paper reflects the fact that the surface which intersects
zero plane@that is, the plane inv̂-k̂ space, where Eq.~41! is
satisfied# to give the dispersion relations is not a singu
one, as in the classical case; rather than the infinitely
slices produced by a singular surface piercing the zero p
as it passes from2` to 1`, the dispersion curves are th
zero contours of a well-behaved undulating surface. The
gularities have been integrated out of the final form of
dispersion relation, resulting in the island shapes shown
Figs. 3, 4, and 5; note that the contouring algorithm is
flawless, and so there are minor imperfections present in
graphics.

Note also that asa increases, the ‘‘islands’’ elongate an
drift upwards in frequency. The elongation admits smallek
solutions as each island stretches towards the frequency
intercept withk50, indicative of a closer agreement wit
the traditional classical case.

The subsequent two sections address quantitatively
salient features of the dispersion curves.

B. Properties of the integrals

Note thatAn
I is negative definite, whilstAn

II and An
III are

positive definite. Given the strong dependence on index
the terms in the infinite sum, as is clearest in Eq.~53!, any
valid solution to the dispersion relation depends ultimat
on balancing the positive and negative contributions from
An

I,II,III , so that the resultingv̂2.0. The strongest depen
dence onxn is exhibited inAn

I andAn
III , since in these inte-

grals xn appears in the limits, and not just in the Bess
function arguments.

Consider the mean value theorem applied toAn
I ,

An
I 5Jn

2~kAxn
22j2!EI~xn!, ~54!

wherejP@0,xn#, and where the envelopeEI(xn) is defined to
be

EI~x!5e2x2E
0

x

i erf~ iu !du ~55!

5xe2x2
i erf~ ix !1p21/2~12e2x2

!. ~56!

~In fact, EI is proportional to the Dawson function@15#, and
the entire analysis could be recast in Dawson function ter
rather than error function of imaginary argument.! Applying
the same technique to the remaining integrals yields

An
II5Jn

2~kAxn
21h2!EII~xn!,

EII~x!5p21/2 ~57!

and

An
III 5Jn

2~kAxn
21z2!EIII ~ uxnu!,
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EIII ~x!5p21/22xex2
erfc~x! ~58!

for some h>0,z>uxnu such that 0<Jn
2(kAxn

22h2)<m,
where m is the maximum ofJn

2(x) for xP@0,̀ ), and 0
<Jn

2(kAxn
22h2)<m8, wherem8 is the maximum ofJn

2(x)
for xP@ uxnu,`). The envelopesEI,III are shown in Fig. 6,
where it is clear thatEI(x) has an extremum atxc'1.16, but
that EIII (x) is monotonically decreasing.

C. Position and shape of dispersion curves

Since it is important to balance the relative weights of t
integrals, consider the implications of maximizing th
negative-definite contribution. For this to happen,xn must be
at its critical value at whichEI has greatest magnitude. I
order to simplify the analysis, let this correspond toxn'1,
with the frequencyv̂c at which this occurs given by

v̂c5n~112/a!21/2'n~121/a!. ~59!

Hence we expect solutions to the dispersion relation to b
frequencies below the classical cyclotron harmonic. N
that asa→`, v̂→n, consistent with the classical case.

Since erfc(x)'0 for x*4, the range of the summation
in Eq. ~53! is limited, in practical terms. Thus in the simple
possible ‘‘nearest neighbor’’ approximation, forming a ba
ance of the negative and positive contributions means thaAn

I

has to be comparable in magnitude toAn21
III . If xn'1, then

xn21'12a/n,0, assumingn,a. Consider only the enve
lope behavior near the critical frequency, that is, consi
v̂5v̂c(11d), whereudu!1. Regardless of the sign ofd, if
dÞ0, EI falls below its maximum magnitude~being at an
extremum!. However, ifd.0, thenEIII also drops, but ifd
,0, EIII rises. Hence there is a finite range ofv over which
the integralsAn

I and An21
III can maintain overall parity in

contributions.
The envelope analysis must be complemented by ass

ing the Bessel function contribution, which of course co
tains thek variation. ForAn

I , the argument to the Besse
function is

k~xn
22j2!1/2, 0<j<xn , ~60!

and forAn
III , the Bessel argument is

k~xn
21z2!1/2, uxnu<z. ~61!

The position of the first zerozn of Jn(z), n51,2, . . . , in-
creases with increasing order of the Bessel function, sca
approximately according tozn'2.831n, with z1'3.83.
Thus the full phase of the first peak of the Bessel function
sampled over a range ofk'zn /xn for eachn. This explains
qualitatively why the dispersion curves form closed stru
tures of increasing length as the harmonic number increa

The Bessel function behavior also controls the relat
magnitudes ofAn

I and An
III . Using small-argument expan

sions for the Bessel functions,
3-7
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U An
I

An21
III U; 1

4

k2

n2

~xn
22j2!n

~xn21
2 1z2!n21 U EI~xn!

EIII ~xn21!
U. ~62!

Given that the optimum frequency isv̂c for which the enve-
lope ofAn

I is as large as it can be, Eq.~62! further constrains
the dispersion curves to begin at larger values ofk as n
increases, in order that the factor ofk/n does not erode the
relative scaling necessary to maintain real solutions to
dispersion relation. This agrees well with the behavior sho
in Figs. 3, 4, and 5, in which the gradient of the line touchi
the left-hand edges of the islands in each of the casea
510, 20, and 50 is approximately 1, 1.4, and 2.3, consis
with the predicted behavior;a1/2.

D. Behavior for small k̂�

In the limit of small k̂' , which is also the smallk limit,
the Bessel function argument can be expanded in orde
find solutions that are the analogs of those in Sec. III
Since D contains k̂'

2 in the denominator, the zeroth-orde
contribution must come from the casen51, with highern
contributing to vanishingly small terms ask̂'→0. The hy-
brid resonance must come fromA1

III , and so we have

A1
III'e2x1

2E
ux1u

` 1

4
k2~x21x1

2!erfc~x!dx

5
k2

12
e2x1

2F112x1
2

Ap
e2ux1u222ux1ux1

2erfc~ ux1u!G .

~63!

The dispersion relation can then be approximated as

v̂2'2v̂p
21

2

3
aAp

v̂p
2

v̂2
@p21/2~112x1

2!

22ux1ux1
2e2x1

2
erfc~ ux1u!#. ~64!

The asymptotic expansion@15#

FIG. 5. Dispersion curves showing solutions inv̂-k space for

the casea550, v̂p53. Vertical axis isv̂; horizontal axis isk.
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erfc~z!;
e2z2

Apz
S 12

1

2z2
1

3

4z4
••• D , ~65!

when substituted into Eq.~64! yields

v̂222v̂p
2'

2v̂p
2

v̂221
, ~66!

which on rearrangement yields the expected hybrid re
nance as the nontrivial solution:

v̂2'112v̂p
2 . ~67!

Notice that when the same approximations are made in
context ofv̂<1, we have

A1
I 1A1

II'
k2

12
@2x1

3e2x1
2
i erf~ ix1!1p21/2~2x1

211!#.

~68!

The required asymptotic expansion is now for erf(ix). This
is readily obtained via the hypergeometric function@15#

erf~z!5
2z

Ap
M S 1

2
,
3

2
,2z2D ~69!

using which yields

erf~ ix !; i
ex2

Apx
S 11

1

2x2
1

3

4x4
••• D , ~70!

and so in the asymptotic limit,

v̂222v̂p
2'2

v̂p
2

v̂2

a

x1
2

, ~71!

which is the same as Eq.~66!. The only possible solution is
the trivial one,v̂50.

Note that the special case ofx150 is not a solution, since
v̂51 is not a solution. In general,xn50 means thatAn

I

50, andAn
II is identical toAn

III .

FIG. 6. Dashed curve showsEIII as a function ofx; solid curve is
EI .
3-8
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In summary, there is only one solution to the dispers
relation for the casek̂'→0, namely, the mode which be
comes the hybrid resonance atk50. This contrasts mark
edly with the classical treatment, in which all the cyclotr
frequencies were solutions~save the one immediately belo
the hybrid, and the fundamental!. Note also that for each
value ofk, there are twice as many frequencies correspo
ing to solutions of the dispersion relation than there are in
classical case, reflecting the continuity of the general surf
~of which the zero contour yields the dispersion curves!, and
therefore the undulations above and below the zero p
will yield two intersections, rather than one. Note also th
the band gaps which appear above the hybrid in the clas
case persist everywhere in the weakly relativistic one.
single mode has an arbitrarily large range ofk for a given
small frequency range, as in the classical case.

E. Trapped modes

It is clear from the weakly relativistic dispersion curv
that there are a number of modes with vanishing group
locity, that is, for which the tangent to the normalizedv-k'

curve is zero. Although the classical case also had many s
modes above the hybrid frequency, The weakly relativis
case has two solutions between each cyclotron harmonic
those dispersion solutions that form closed curves. Moreo
such stationary modes are present at frequencies below
hybrid. Hence a nonlocalized, broadband disturbance of s
a plasma would yield many propagating electrostatic wav
and several nonpropagating stationary electrostatic osc
tions. Given that plasma oscillations can be a source of e
tromagnetic radiation in pair plasmas@16,17#, it is significant
that the spectrum of possible electrostatic modes is m
richly structured in the relativistic case than the classical o

V. DISCUSSION

In this paper we have addressed the kinetic theory
weakly relativistic electron-positron plasmas, producing d
persion relations for the electrostatic Bernstein modes.
treatment presented here preserves the full momentum
pendence of the cyclotron frequency, albeit with a relaxat
on the true relativistic form of the distribution function. Th
form of the dispersion curves is markedly different from th
of the well-known classical singular dispersion relations,
that thev-k' relations form closed, island domains, betwe
the cyclotron harmonics, and show band gaps distribu
throughout the solution space, rather than confined to
quencies just above the hybrid. Moreover, there are e

FIG. 7. The Bromwich contour for thep̂i integration.
03640
n

d-
e

ce

ne
t
al
o

-

ch
c
or
r,

the
ch
s,
a-
c-

re
e.

f
-
e
e-
n

t

d
e-
ra

limitations on allowed modes for long and short wav
lengths, and within these limitations, there are greater nu
bers of allowedv-k' modes than in the classical case. Som
of this new structure arises from the mass symmetry,
most derives from careful handling of the integrations
momentum space.

The implications of this new treatment are confin
largely to astrophysical plasmas, where relativistic electr
positron plasmas occur naturally. It is very unlikely that t
results presented here impact on any laboratory ba
electron-ion plasma, in which the relative mobility of th
species is paramount.

For example, in a pulsar atmosphere, the spectrum
propagating electrostatic waves is more structured than
plied by the classical case. Waves are significantly m
bandwidth limited, and there is a greater number of trapp
modes. These effects will have to be taken into accoun
any future treatment of the radiation from such sources.

The theoretical approach detailed in this paper is a
valid for the ordinary and extraordinary electromagne
modes in equal-mass plasmas, including the Landau da
ing.

APPENDIX: HANDLING OF SINGULAR INTEGRALS

A proper derivation of the dispersion relation Eq.~46!,
and especially the correct handling of the singularities in
integrals Eq.~44! and Eq.~45!, requires the time dependenc
to be treated as an initial value problem. As is well know
this was first pointed out by Landau in his derivation of t
damping of electrostatic waves in an unmagnetized plas
~so-called Landau damping!. The presence of a uniform
magnetic field gives rise, in the classical, nonrelativistic ca
to undamped electrostatic Bernstein waves in a plasma
a stationary ion background, and as is shown in Sec. II A
extension to a classical electron-positron plasma leads
similar conclusions.

In the case of weakly relativistic effects, of primary inte
est in this paper, singularities arise where the denominato
the p̂i integral vanishes. In the derivation of Eq.~9! we in-
troduced the perturbation expi(k•r2vt). We note here that
strictly the frequencyv should be introduced by a Laplac
transform, in whichv has a positive imaginary part, and th
first-order distribution functionf and electric fieldE have
given initial values att50. The subsequent behavior of th
plasma is then to be obtained by forming the inverse Lapl
transform of the electric field. The presence of a posit
imaginary part inv implies that thep̂i integration is only
defined in the upper halfv plane, and therefore no singular
ties actually occur. In order to investigate the properties
the dispersion relation, Eq.~46!, for all values ofv, and in
particular for realv, Eq. ~46! must be analytically continued
into the region where Im(v)<0. This is achieved by treating
p̂i as a complex variable and displacing the path of integ
tion so that it lies on the real axis ofp̂i , except at the sin-
gular points6 p̂i0, where the path of integration is indente
above the real axis, as in Fig. 7.
3-9
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1. Case„i…: I1„a,b…

The treatment of the integral

I1~a,b!5E
2`

`

dz
exp~2az2!

z22b2
~A1!

requires the definition of a suitable integration contour
order that the integral is meaningful at the polesz56b.
Taking the contour as shown in Fig. 7, it is immediate
apparent that the residues around each pole are equa
opposite in sign, leaving the contour integral equal to
principal part along the real axis,

I1~a,b!5
1

b
PE

2`

` exp~2ab2u2!

u221
du ~A2!

5A~ab2!/b, ~A3!

wherez5bu. Notice that

]A~x!

]x
1A~x!52E

2`

`

exp~2xu2!du52Ap

x
. ~A4!

Given that

PE
2`

` du

u221
50, ~A5!

the full solution to Eq.~A4! is
03640
nd
e

A~x!5 ipe2xerf~ iAx!. ~A6!

2. Case„ii …: I2„a,b…

This time the integral has no poles along the real axis

I2~a,d!5E
2`

` exp~2az2!

z21d2
dz ~A7!

5
1

dE2`

` exp~2ad2u2!

u211
du

~A8!

5B~ad2!/d. ~A9!

Proceeding as before,B satisfies the differential equation

]B~x!

]x
2B1Ap

x
50, ~A10!

which, together with

E
2`

` du

11u2
5p ~A11!

yields the solution forB(x) as

B~x!5pexerfc~Ax!. ~A12!
re,
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